Scripps Research Logo

Publications

*Equal contribution

WuT, Li Y, Shi L and Wu X (2024). Break-induced replication is activated to repair R-loop-associated double-strand breaks in SETX-deficient cells.EMBO J. Under review bioRxiv: https://biorxiv.org/cgi/content/short/2024.06.29.601361v1

Shah S*, Li Y*, Li S, Hu Q, Wu T, Shi Y, Nguyen T, Ive I, Shi L, Wang H and Wu X (2024). 53BP1 deficiency leads to hyperrecombination using break-induced replication (BIR).Nature Communication Under revision 

Li Y, Zhang Y, Shah SB, Chang CY, Wang H, Wu X (2024) MutSβ protects common fragile sites by facilitating homology-directed repair at DNA double-strand breaks with secondary structures. Nucleic Acids Res. 52:1120-1135. 

Zhao Y, Hou K, Li Y, Hao S, Liu Y, Na Y, Li C, Cui J, Xu X, Wu X, Wang H (2023). Human HELQ regulates DNA end resection at DNA double-strand breaks and stalled replication forks. Nucleic Acids Res. 51:12207-12223. 

Liu S, Wang Z, Shah SB, Chang CY, Ai M, Nguyen T, Xiang R, Wu X (2023). DNA repair protein RAD52 is required for protecting G-quadruplexes in mammalian cells. J Biol Chem. 299:102770. 

Li S, Wang H, Jehi S, Li J, Liu S, Wang Z, Truong L, Chiba T, Wang Z, Wu X (2021). PIF1 helicase promotes break-induced replication in mammalian cells. EMBO J. 40: e104509

Wu X, Malkova A (2021). Break-induced replication mechanisms in yeast and mammals. Curr Opin Genet Dev. 71:163-170. (Review)

Adeyemi RO, Willis NA, Elia AEH, Clairmont C, Li S, Wu X, D'Andrea AD, Scully R, Elledge SJ (2021). The Protexin complex counters resection on stalled forks to promote homologous recombination and crosslink repair. Mol Cell81:4440-4456.e7. 

Li, S., Wu, X. (2020). Common fragile sites: protection and repair. Cell Biosci 10, 29. (Review)

Wu, X. (2019). Replication Stress Response Links RAD52 to Protecting Common Fragile Sites. Cancer 11 (10): 1467. (Review)

Hu, Q.*, Lu, H.*, Wang, H.*, Li, S., Truong, L.N., Li, J., Liu, S., Xiang, R. and Wu, X. (2019). Break-induced replication plays a prominent role in long-range repeat-mediated deletion. EMBO J. 38: e101751. 

Li, S.*, Lu, H.*, Wang, Z.*, Hu, Q., Wang, H., Xiang, R., Chiba, T., and Wu, X. (2019) XPF is important for repair of DNA double-strand breaks containing secondary structures. iScience 16, 63-78. 

Wang, Z.*, Song, Y.*, Li, S., Kurian, S., Xiang, R., Chiba, T., and Wu, X. (2019). DNA polymerase (POLQ) is important for repair of DNA double-strand breaks caused by fork collapse. J Biol Chem. 294, 3909-3919. 

Wang, H.*, Li, S.*, Zhang, H., Wang, Y., Hao, S., and Wu, X. (2018). BLM prevents instability of structure-forming DNA sequences at common fragile sites. Plos Genetics 14, e1007816. 

Wang, H.*, Li, S.*, Oaks, J., Ren, J., Li, L., and Wu, X. (2018). The concerted roles of FANCM and Rad52 in the protection of common fragile sites. Nature Communication 9, 2791. 

Selected publications for past years:

Wang, H., Li, Y., Truong, L.N., Shi,L.Z., Hwang, P.Y.H., He, J., Cho, M.J., Li, H., Negrete, A., Shiloach, J., Berns, M.W., Shen, B., Chen, L. and Wu, X. (2014) CtIP maintains stability at common fragile sites and inverted repeats by end resection-independent endonuclease activity. Mol Cell 54:1012-1021. PMID: 24837675

Truong, L.N., Li, Y., Sun, E., Ang, K., Hwang, P.Y., and Wu, X. (2014) Homologous recombination is a primary pathway to repair DNA double-strand breaks generated during DNA rereplication. J. Biol. Chem. 289:28910-28923. PMID: 25160628

Truong, L., Li, Y., Shi, L., Hwang, P., He, J., Wang, H., Razavian, N., Berns, M., and Wu, X. (2013) Microhomology-mediated End Joining and Homologous Recombination share the initial end resection step to repair DNA double-strand breaks in mammalian cells. Proc Natl Acad Sci. 110:7720-7725. PMID: 23610439 

Wang, H., Shi, L.Z., Wong, C.C., Han, X., Hwang, P.Y., Truong, L.N., Zhu, Q., Shao, Z., Chen, D.J., Berns, M.W., Yates JR 3rd, Chen L, Wu X. (2013) The interaction of CtIP and Nbs1 connects CDK and ATM to regulate HR-mediated double-strand break repair. PLoS Genet. 9: e1003277. PMID: 23468639

Lee, A.Y., Chiba, T., Truong, L.N., Cheng, A.N., Do, J., Cho, M.J., Chen, L. and Wu, X. (2012) Dbf4 is direct downstream target of ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR) protein to regulate intra-S-phase checkpoint. J. Biol. Chem. 287:2531-3543. PMID: 22123827

Wang, H., Shao, Z., Shi, L.Z., Hwang, P.Y., Truong, L.N., Berns, M.W., Chen, D.J. and Wu, X. (2012) CtIP protein dimerization is critical for its recruitment to chromosomal DNA double-stranded breaks. J. Biol. Chem. 287:21471-21480. PMID: 22544744

He, J., Shi, L.Z., Truong, L.N., Lu, C.S., Razavian, N., Li, J., Negrete, A., Shiloach, J., Berns, M.W. and Wu, X. (2012) Rad50 zinc hook is important for the Mre11 complex to bind chromosomal DNA double-strand breaks and initiate various DNA damage responses. J. Biol. Chem. 287:31747-31756. PMID: 22833675

Truong, L.N. and Wu, X. (2011) Prevention of DNA re-replication in eukaryotic cells. J. Mol. Cell Biol. 3:13-22. PMID: 21278447

Chen, L., Nievera, C., Lee A. and Wu, X. (2008) Cell cycle-dependent complex formation of BRCA1/CtIP/Mre11-Rad50-Nbs1 is important for DNA double-strand break repair. J. Biol Chem. 283: 7713-7720. PMID: 18171670

Olson E., Nievera C.J., Lee A.Y., Chen L. and Wu X. (2007) The Mre11 complex acts both upstream and downstream of ATR to regulate the S-phase checkpoint following UV treatment. J. Biol Chem.282: 22939-22952. PMID: 17526493 

Liu E., Lee A.Y., Chiba T., Olson E. Sun P. and Wu X. (2007) ATR-mediated S-phase checkpoint prevents DNA rereplication in mammalian cells when the licensing control is disrupted. Journal of Cell Biology 179: 643-657. PMID: 18025301

Olson E., Nievera C.J., Liu E., Lee A.Y., Chen L. and Wu X. (2007) The Mre11 complex mediates the S-phase checkpoint through an interaction with RPA. Molecular and Cellular Biology 27: 6053-6067. PMID: 17591703

Lee A.Y., Liu E. and Wu X. (2007) The Mre11/Rad50/Nbs1 complex plays an important role in the prevention of DNA rereplication in mammalian cells. J. Biol Chem. 282: 32243-32255. PMID: 17715134 

Olson E., Nievera C. J., Klimovich V., Fanning E. and Wu X. (2006) RPA2 is a direct downstream target for ATR to regulate the S-phase checkpoint. J. Biol Chem. 281: 39517-39533. PMID: 17035231 

Liu, E., Li, X., Yan, F., Zhao Q. and Wu, X. (2004) Cyclin-dependent kinases phosphorylate human Cdt1 and induce its degradation. J. Biol Chem. 279: 17283-17288. PMID: 15004027

Wu, X.*, Avni, D., Chiba, T., Yan, F., Zhao, Q., Lin, Y., Heng, H.H.Q. and Livingston, D.M.* (2004) SV40 T antigen interacts with Nbs1 to disrupt DNA replication control. Genes & Development 18:1305-1316. *Corresponding authors. PMID: 15175262

Li, X., Zhao, Q., Liao, R., Sun, P. and Wu, X. (2003) The SCFSkp2 ubiquitin ligase complex interacts with the human replication licensing factor Cdt1 and regulates Cdt1 degradation. J. Biol Chem. 278: 30854-30858. PMID: 12840033

Wu, X., Rathbun, G., Lane, W.S., Weaver, D.T. and Livingston, D.M. (2000) Communication of the Nijmegen Breakage Syndrome Protein with ATM and BRCA1. Cold Spring Harbor Symposia on Quantitative Biology LXV: 535-545. PMID: 12760071

Wu, X., Ranganathan, V., Weisman, D.S., Heine, W.F., Ciccone, D.N., O’Neill, T.B., Crick, K.E., Pierce, K.A., Lane, W.S., Rathbun, G., Livingston, D.M. and Weaver, D.T. (2000). ATM phosphorylation of Nijmegen breakage syndrome protein is required in a DNA damage response. Nature 405: 477-482. PMID: 10839545

Wu, X., Heine, W.F., Petrini, J.H.J., Weaver, D.T., Livingston, D.M. and Chen, J. (2000). Independence of Nbs1/Mre11/Rad50 nuclear focus formation and the presence of intact BRCA1. Science 289: 11

Wu, X., Wu, C. and Haber, J.E. (1997). Rules of donor preference in yeast mating-type gene switching revealed by a competition assay involving two types of recombination. Genetics 147: 399-407. PMID: 9335581 

Wu, X., Haber, J.E. (1996) A 700 bp cis-acting region controls mating-type dependent recombination along the entire left arm of yeast chromosome III. Cell 87: 277-285. PMID: 8861911

Wu, X., Moore, J.K. and Haber, J.E. (1996). Mechanism of MATa donor preference during mating-type switching of Saccharomyces cerevisiae. Molecular and Cellular Biology 16: 657-668. PMID: 8552094 

Wu, X. and Haber, J.E. (1995). MATa donor preference in yeast mating-type switching: activation of a large chromosomal region for recombination. Genes & Development 9:1922-1932. PMID: 7649475